Available online at www.sciencedirect.com

Journal of the European Ceramic Society 23 (2003) 2413-2416

www.elsevier.com/locate/jeurceramsoc

Microwave dielectric properties of Bi_2O_3 -doped Ca[$(Li_{1/3}Nb_{2/3})_{1-x}Ti_x$] $O_{3-\delta}$ ceramics

Jong-Yoon Ha^{a,b,*}, Ji-Won Choi^a, Seok-Jin Yoon^a, Doo Jin Choi^b, Ki Hyun Yoon^b, Hyun-Jai Kim^a

> ^aThin Film Materials Research Center, KIST, Seoul 130-650, South Korea ^bDepartment of Ceramic Engineering, Yonsei University, Seoul 120-749, South Korea

Abstract

The effect of the additive on the densification, low temperature sintering, and microwave dielectric properties of the Ca[(Li_{1/3} Nb_{2/3})_{1-x}Ti_x]O_{3- δ}(CLNT) was investigated. Bi₂O₃ addition improved the densification and reduced the sintering temperature from 1150 to 900 °C of CLNT microwave dielectric ceramics. As the Bi₂O₃ content increased, the dielectric constant (ε_r) and bulk density increased. The quality factor (*Q*:*f*₀), however, was decreased slightly. The temperature coefficient of resonant frequency (τ_f) shifted to a positive value with increasing Bi₂O₃ content. The dielectric properties (ε_r , *Q*:*f*₀, τ_f) of Ca[(Li_{1/3}Nb_{2/3})_{0.95}Ti_{0.05}]O_{3- δ} and Ca[(Li_{1/3}Nb_{2/3})_{0.8} Ti_{0.2}]O_{3- δ} with 5 wt.% Bi₂O₃ sintered at 900 °C for 3 were 20, 6500 GHz, -4 ppm/°C, and 35, 11,000 GHz, 13 ppm/°, respectively. The relationship between the microstructure and dielectric properties was studied by X-ray diffraction (XRD), and SEM.

© 2003 Published by Elsevier Ltd.

Keywords: Bi2O3; Dielectric properties; LTCC; Microwave ceramics; Ca(Li,Nb,Ti)O3

1. Introduction

Recently, RF multilayer device structures have been developed (to reduce device size) in which a low melting point flux is frequently added so that dielectric ceramics can be co-fired with low resistance conductors such as Ag and Cu at low temperature instead of using Ag–Pd or ternary (Pt:Pd:Au) electrodes. Most microwave dielectric materials require high dielectric constants (ε_r), high quality factor values $(Q \cdot f_0)$, and stable temperature coefficient of the resonant frequency ($\tau_f \leq |10| \text{ ppm/}^{\circ}\text{C}$). The low sintering temperature microwave dielectric materials also require the same properties. It is known that microwave dielectric constant materials between 35 and 40 can be used for band pass filters, and materials with ε_r below 20 can also be used for antennas. Now, existing microwave dielectric materials, Ba₂Ti₉O₂₀¹ and $(Zr,Sn)TiO_4^2$ etc., all used for filters (duplexer, BPF, LPF etc), but they have high sintering temperatures. So, they can not be co-fired with an internal electrode (Ag, Cu) at a low sintering temperature (<900 °C).

In our previous work,³ the properties of Ca[(Li_{1/3} Nb_{2/3})_{1-x}Ti_x]O_{3- δ} ceramics were reported. Depending

upon stoichiometry, the dielectric properties vary between 30 and 45 and the $Q \cdot f_0$ value is over 20,000 GHz at 1150 °C. This paper reports: (i) the characteristics and microwave dielectric properties of Ca[(Li_{1/3} Nb_{2/3})_{1-x}Ti_x]O_{3- δ} doped with Bi₂O₃ as a sintering flux to decrease the sintering temperature, and (ii) the relationship between the physical properties and microwave dielectric properties of the ceramics.

2. Experimental procedure

The Ca[$(Li_{1/3}Nb_{2/3})_{1-x}Ti_x]O_{3-\delta}$ powder compositions were synthesized by the conventional solid–solution reaction method using high purity CaCO₃, Li₂Co₃, Nb₂O₅, TiO₂, Bi₂O₃ (all Aldrich, 99.9%). The starting materials were mixed for 24 h in a ball mill with zirconia balls according to the desired stoichiometry, Ca[$(Li_{1/3}$ Nb_{2/3} $)_{1-x}Ti_x]O_{3-\delta}$, and ground in ethyl alcohol to prevent dissolution of Li₂O₃ in water. The mixtures were dried and calcined in an alumina crucible at 850 °C for 2 h in air. The calcined powder was milled again with the additive, Bi₂O₃ from 5 wt.% to 10 wt.% for 24 h. The dried powders were pressed into rods of 12 mm diameter and 5–6 mm thickness under a pressure of 20,000 psi by cold isostatic pressing (CIP). The sintering temperature

^{*} Corresponding author.

 $^{0955\}text{-}2219/03/\$$ - see front matter O 2003 Published by Elsevier Ltd. doi:10.1016/S0955-2219(03)00162-6

was 900 °C for 3 h with 5 °C/min heating and cooling rate. The bulk density was measured by the Archimedes method. The microwave dielectric properties were measured by the dielectric rod resonator method [4] using a network analyzer (HP8720C). As not all specimens were available in equal size, the properties were measured at different frequencies. For the presentation of loss quality data the following general relation for narrow frequency range was utilized: $Q \cdot f_0 = \text{constant}$ (GHz). The temperature coefficient of resonant frequency ($\tau_{\rm f}$) at microwave frequencies was measured in the temperature range of 20-80 °C. Sintered pellets were examined by powder X-ray diffraction (XRD, Philips PW 1820) analysis with CuK_{α} radiation. The microstructures of $Ca[(Li_{1/3}Nb_{2/3})_{1-x}Ti_x]O_{3-\delta}$ with Bi_2O_3 ceramics were investigated using a scanning electron microscope (SEM, JXA-8600, Jeol).

3. Results and discussion

Fig. 1 shows X-ray diffraction patterns of the Ca[(Li_{1/3} Nb_{2/3})_{0.8}Ti_{0.2}]O_{3- δ} with Bi₂O₃ from 5 wt.% to 10 wt.% sintered at 900 °C for 3 h. The diffraction peaks can be indexed according to the CaTiO₃-type orthorhombic perovskite structure. The Ca[(Li_{1/3}Nb_{2/3})_{0.8}Ti_{0.2}]O_{3- δ} prepared without Bi₂O₃ was single phase.[3] When 5 wt.% Bi₂O₃ was added, a small amount of the second phase was detected. With increasing amount of Bi₂O₃ (m.p. 825 °C), the intensity of the second phase is found in the specimens, because of the liquid phase in the grain boundaries.

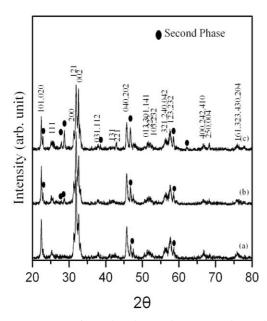


Fig. 1. XRD spectra of Ca[$(Li_{1/3}Nb_{2/3})_{0.8}Ti_{0.2}$]O_{3- δ} specimens sintered at 900 °C for 3 h with Bi₂O₃ contents of: (a) 5 (wt.%), (b) 7 (wt.%), (c) 10 (wt.%).

The bulk density of Ca[$(Li_{1/3}Nb_{2/3})_{1-x}Ti_x$]O_{3- δ} plus Bi₂O₃ specimens sintered at 900 °C for 3 h increased when the Bi₂O₃ content increased from 5 to 10 wt.%. However, the bulk density slightly decreased, as the Ti concentration increased from 0.05 to 0.3 mol as shown in Fig. 2. By preparing Ca[$(Li_{1/3}Nb_{2/3})_{1-x}Ti_x$]O_{3- δ} ceramics with Bi₂O₃ additions, densities over 92% theoretical can be obtained by sintering at 900 °C for 3 h.

Fig. 3 shows the microstructure of the Ca[$(Li_{1/3}Nb_{2/3})_{0.8}$ Ti_{0.2}]O_{3- δ} prepared with 5–10 wt.% Bi₂O₃ from sintered at 900 °C for 3h and sintered without Bi₂O₃ sintered at 1150 °C for 3 h. It is evident that the grains typically exhibited platelet morphology.⁵ Abnormal grain growth

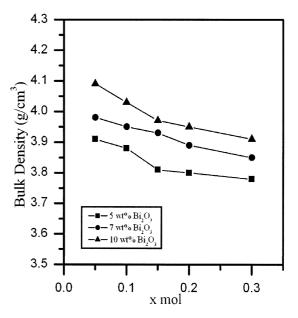


Fig. 2. Bulk density of Ca[(Li_{1/3}Nb_{2/3})_{1-x}Ti_x]O_{3- δ} specimens sintered at 900 °C for 3 h as function *y* of Bi₂O₃ content in starting mixture.

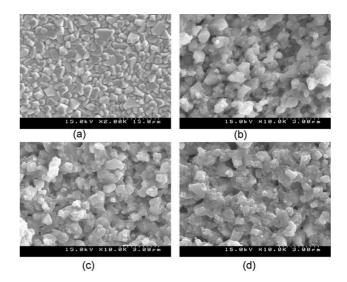


Fig. 3. The surface microstructure of Ca[$(Li_{1/3}Nb_{2/3})_{0.8}Ti_{0.2}]O_{3-\delta}$ specimens sintered at 900 °C for 3 h with additions of Bi₂O₃: (a) 0 (sintered at 1150 °C 3 h), (b) 5, (c) 7, (d) 10 (wt.%).

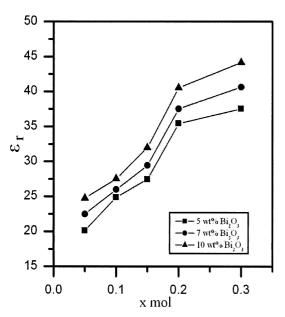


Fig. 4. Dielectric constant of $Ca[(Li_{1/3}Nb_{2/3})_{1-x}Ti_x]O_{3-\delta}$ specimens sintered at 900 °C for 3 h as a function TiO₂ content and Bi₂O₃ content of starting mixture.

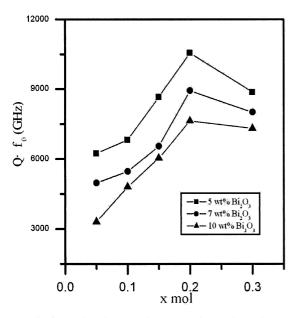


Fig. 5. $Q \cdot f_0$ of Ca[(Li_{1/3}Nb_{2/3})_{1-x}Ti_x]O_{3- δ} specimens sintered at 900 °C for 3 h as a function y TiO₂ content and Bi₂O₃ content of starting mixture.

does not occur because the limited liquid phase in grain boundary inhibited grain growth. So the grains are very small (average grain size $0.5 \,\mu$ m) and homogeneous with few pores.

Fig. 4 shows the dielectric constant (ε_r) of Ca[(Li_{1/3} Nb_{2/3})_{1-x}Ti_x]O_{3- δ} ceramics prepared with different amounts of Bi₂O₃ and sintered at 900 °C for 3 h. The relationship between ε_r value and the amounts of Bi₂O₃ exhibits the same trend as that between the bulk densities and Bi₂O₃ content. The reason for the increased

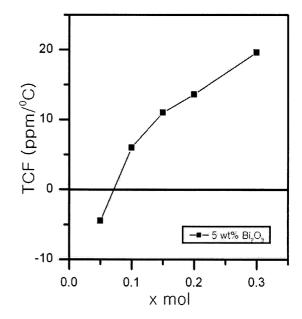


Fig. 6. $\tau_{\rm f}$ of Ca[(Li_{1/3}Nb_{2/3})_{1-x}Ti_x]O_{3- δ} specimens sintered at 900 °C for 3 h with 5 wt.% Bi₂O₃ as a function *y* TiO₂ content.

dielectric constant as the Bi₂O₃ content increased is the reduction of porosity.⁶ However, the dielectric constant of Ca[(Li_{1/3}Nb_{2/3})_{1-x}Ti_x]O_{3- δ} prepared with constant amount of Bi₂O₃ increased with increasing Ti concentration from 0.05 to 0.3 mol because the small Ti⁴⁺ ion (0.605 Å) is incorporated into the B-site [Li_{1/3}Nb_{2/3}]^{3.67+} having larger ionic radius (0.66 Å); hence there is an increase in the rattling effect from the substitution of the smaller Ti⁴⁺ into the larger [Li_{1/3}Nb_{2/3}]^{3.67+} site.^{3.7}

Fig. 5 shows the $Q \cdot f_0$ values of Ca[(Li_{1/3}Nb_{2/3})_{1-x} Ti_x]O_{3- δ} ceramics prepared with Bi₂O₃ contents from 5 to 10 wt.% sintered at 900 °C for 3 h. The $Q \cdot f_0$ values decreased with increasing Bi₂O₃ content. The reason for the decrease in $Q \cdot f_0$ values is the increased the second phase in the specimen as mentioned earlier. It was reported by Iddles et al.⁸ that a second phase was a more important factor than porosity to reduce the $Q \cdot f_0$ values of microwave dielectric ceramics having over 90% of relative density. The maximum $Q \cdot f_0$ values occur for Ti concentration of 0.2 mol irrespective of Bi₂O₃ content.

Fig. 6 shows temperature coefficient of resonant frequency (τ_f) of Ca[(Li_{1/3}Nb_{2/3})_{1-x}Ti_x]O_{3- δ} prepared with 5 wt.% Bi₂O₃. The τ_f value became more positive from -4.5 to 19.6 ppm/°C with an increase of Ti concentration. As Bi₂O₃ content is increased, the τ_f value shifts negative abruptly from -4 to -34 ppm/°C for Ca[(Li_{1/3}Nb_{2/3})_{0.95}Ti_{0.05}]O_{3- δ} with 5 to 10 wt.% Bi₂O₃. The τ_f value should be controlled between -10 and 10 ppm/°C for applications in band pass filters (BPF) and antenna etc. The optimized microwave properties for multi-chip antenna, are, ε_r =20, $Q:f_0$ =6500 GHz, and τ_f =-4 ppm/°C for Ca[(Li_{1/3}Nb_{2/3})_{0.95}Ti_{0.05}]O_{3- δ} with 5 wt.%

Bi₂O₃, and $\varepsilon_r = 35$, $Q \cdot f_0 = 11,000$ GHz, and $\tau_f = 13$ ppm/ °C, and for multi-chip filters based on Ca[(Li_{1/3}Nb_{2/3})_{0.8} Ti_{0.2}]O_{3- δ} with 5 wt.% Bi₂O₃.

4. Conclusions

The microwave dielectric properties of the Ca[(Li_{1/3} Nb_{2/3})_{1-x}Ti_x]O_{3- δ} doped with Bi₂O₃ additive was investigated. Bi₂O₃ additions improved the densification and reduced the sintering temperature from 1150 to 900 °C. With increasing Bi₂O₃ content, the dielectric constant and bulk density increased. The quality factor, however, decreased slightly. The temperature coefficients of the resonant frequency shifted slightly positive with increasing Bi₂O₃ content and increased from -4.5 to 19.6 ppm/°C with an increase of Ti concentration. The dielectric properties (ε_r , Qf₀, τ_f) of Ca[(Li_{1/3}Nb_{2/3})_{0.95}Ti_{0.05}]O_{3- δ} and Ca[(Li_{1/3}Nb_{2/3})_{0.8}Ti_{0.2}]O_{3- δ} with 5 wt.% Bi₂O₃ sintered at 900 °C for 3 h were 20, 6500 GHz, -4 ppm/°C, and 35, 11,000 GHz, 13 ppm/°C, respectively.

References

- Plourde, J. K., Lim, D. F., O'Bryan, H. M. and Thomson, J., J. Am. Ceram. Soc., 1975, 58, 418.
- 2. Heiso, Y. C., Wu, L. and Wei, C. C., Mater. Res. Bull, 1988, 23, 1687.
- Choi, Ji-won, Kang, Chong-yun, Yoon, Seok-Jin, Kim, Hyun-Jai, Jung, Hyung-Jin and Yoon, Ki Hyun, Microwave dielectric properties of Ca[(Li_{1/3}Nb_{2/3})_{1-x}M_x]O_{3-δ} (M = Sn, Ti) ceramics. J. Mater. Res., 1999, 14, 3567–3570.
- Kobayashi, Y. and Katoh, M., Microwave measurement of dielectric properties of low-loss materials by the dielectric rod resonator method. *IRE Trans. Microwave Theory Tech.*, 1985, 33, 586–592.
- Zhang, Hongguo *et al.*, Low-temperature sintering, densification, and properties of Z-type hexaferrite with Bi₂O₃ additives. *J. Am. Ceram. Soc.*, 2001, 84, 2889–2894.
- Takata, M. and Kageyama, K., Microwave characteristics of A(B_{1/2}⁺³B_{1/2}⁺⁵)O₃ ceramics (A = Ba, Ca, Sr : B⁺³ = La, Nd, Sm, Yb; B⁺⁵ = Nb, Ta). *J. Am. Ceram. Soc.*, 1989, **72**, 1955.
- Kagata, H., Kato, J., Nishimoto, K. and Inoue, T., Dielectric properties of Pb-based perovskite substituted by Ti for B-site at microwave frequencies. *Jpn. J. Appl. Phys*, 1993, **32**, 4332.
- Iddles, D. M., Bell, A. J. and Moulson, A. J., Relationships between dopants, microstructure and the microwave dielectric properties of ZrO₂-TiO₂-SnO₂ ceramics. *J. Mater. Sci.*, 1992, 27, 6303–6310.